Linkedlist源码

Posted by LJJ Blog on June 2, 2019

LinkedList 源码

双向链表实现。

public class LinkedList extends AbstractSequentialList implements List, Deque, Cloneable, java.io.Serializable { transient int size = 0;

  /**
   * Pointer to first node.
   */
  transient Node<E> first;

  /**
   * Pointer to last node.
   */
  transient Node<E> last;

  /*
  void dataStructureInvariants() {
      assert (size == 0)
          ? (first == null && last == null)
          : (first.prev == null && last.next == null);
  }
  */

  /**
   * Constructs an empty list.
   */
  public LinkedList() {
  }

  /**
   * Constructs a list containing the elements of the specified
   * collection, in the order they are returned by the collection's
   * iterator.
   *
   * @param  c the collection whose elements are to be placed into this list
   * @throws NullPointerException if the specified collection is null
   */
  public LinkedList(Collection<? extends E> c) {
      this();
      addAll(c);
  }

  /**
   * Links e as first element.
   */
  private void linkFirst(E e) {
      final Node<E> f = first;
      final Node<E> newNode = new Node<>(null, e, f);
      first = newNode;
      if (f == null)
          last = newNode;
      else
          f.prev = newNode;
      size++;
      modCount++;
  }

  /**
   * Links e as last element.
   */
  void linkLast(E e) {
      final Node<E> l = last;
      final Node<E> newNode = new Node<>(l, e, null);
      last = newNode;
      if (l == null)
          first = newNode;
      else
          l.next = newNode;
      size++;
      modCount++;
  }

  /**
   * Inserts element e before non-null Node succ.
   */
  void linkBefore(E e, Node<E> succ) {
      // assert succ != null;
      final Node<E> pred = succ.prev;
      final Node<E> newNode = new Node<>(pred, e, succ);
      succ.prev = newNode;
      if (pred == null)
          first = newNode;
      else
          pred.next = newNode;
      size++;
      modCount++;
  }

  /**
   * Unlinks non-null first node f.
   */
  private E unlinkFirst(Node<E> f) {
      // assert f == first && f != null;
      final E element = f.item;
      final Node<E> next = f.next;
      f.item = null;
      f.next = null; // help GC
      first = next;
      if (next == null)
          last = null;
      else
          next.prev = null;
      size--;
      modCount++;
      return element;
  }

  /**
   * Unlinks non-null last node l.
   */
  private E unlinkLast(Node<E> l) {
      // assert l == last && l != null;
      final E element = l.item;
      final Node<E> prev = l.prev;
      l.item = null;
      l.prev = null; // help GC
      last = prev;
      if (prev == null)
          first = null;
      else
          prev.next = null;
      size--;
      modCount++;
      return element;
  }

  /**
   * Unlinks non-null node x.
   */
  E unlink(Node<E> x) {
      // assert x != null;
      final E element = x.item;
      final Node<E> next = x.next;
      final Node<E> prev = x.prev;

      if (prev == null) {
          first = next;
      } else {
          prev.next = next;
          x.prev = null;
      }

      if (next == null) {
          last = prev;
      } else {
          next.prev = prev;
          x.next = null;
      }

      x.item = null;
      size--;
      modCount++;
      return element;
  }

  /**
   * Returns the first element in this list.
   *
   * @return the first element in this list
   * @throws NoSuchElementException if this list is empty
   */
  public E getFirst() {
      final Node<E> f = first;
      if (f == null)
          throw new NoSuchElementException();
      return f.item;
  }

  /**
   * Returns the last element in this list.
   *
   * @return the last element in this list
   * @throws NoSuchElementException if this list is empty
   */
  public E getLast() {
      final Node<E> l = last;
      if (l == null)
          throw new NoSuchElementException();
      return l.item;
  }

  /**
   * Removes and returns the first element from this list.
   *
   * @return the first element from this list
   * @throws NoSuchElementException if this list is empty
   */
  public E removeFirst() {
      final Node<E> f = first;
      if (f == null)
          throw new NoSuchElementException();
      return unlinkFirst(f);
  }

  /**
   * Removes and returns the last element from this list.
   *
   * @return the last element from this list
   * @throws NoSuchElementException if this list is empty
   */
  public E removeLast() {
      final Node<E> l = last;
      if (l == null)
          throw new NoSuchElementException();
      return unlinkLast(l);
  }

  /**
   * Inserts the specified element at the beginning of this list.
   *
   * @param e the element to add
   */
  public void addFirst(E e) {
      linkFirst(e);
  }

  /**
   * Appends the specified element to the end of this list.
   *
   * <p>This method is equivalent to {@link #add}.
   *
   * @param e the element to add
   */
  public void addLast(E e) {
      linkLast(e);
  }

  /**
   * Returns {@code true} if this list contains the specified element.
   * More formally, returns {@code true} if and only if this list contains
   * at least one element {@code e} such that
   * {@code Objects.equals(o, e)}.
   *
   * @param o element whose presence in this list is to be tested
   * @return {@code true} if this list contains the specified element
   */
  public boolean contains(Object o) {
      return indexOf(o) >= 0;
  }

  /**
   * Returns the number of elements in this list.
   *
   * @return the number of elements in this list
   */
  public int size() {
      return size;
  }

  /**
   * Appends the specified element to the end of this list.
   *
   * <p>This method is equivalent to {@link #addLast}.
   *
   * @param e element to be appended to this list
   * @return {@code true} (as specified by {@link Collection#add})
   */
  public boolean add(E e) {
      linkLast(e);
      return true;
  }

  /**
   * Removes the first occurrence of the specified element from this list,
   * if it is present.  If this list does not contain the element, it is
   * unchanged.  More formally, removes the element with the lowest index
   * {@code i} such that
   * {@code Objects.equals(o, get(i))}
   * (if such an element exists).  Returns {@code true} if this list
   * contained the specified element (or equivalently, if this list
   * changed as a result of the call).
   *
   * @param o element to be removed from this list, if present
   * @return {@code true} if this list contained the specified element
   */
  public boolean remove(Object o) {
      if (o == null) {
          for (Node<E> x = first; x != null; x = x.next) {
              if (x.item == null) {
                  unlink(x);
                  return true;
              }
          }
      } else {
          for (Node<E> x = first; x != null; x = x.next) {
              if (o.equals(x.item)) {
                  unlink(x);
                  return true;
              }
          }
      }
      return false;
  }

  /**
   * Appends all of the elements in the specified collection to the end of
   * this list, in the order that they are returned by the specified
   * collection's iterator.  The behavior of this operation is undefined if
   * the specified collection is modified while the operation is in
   * progress.  (Note that this will occur if the specified collection is
   * this list, and it's nonempty.)
   *
   * @param c collection containing elements to be added to this list
   * @return {@code true} if this list changed as a result of the call
   * @throws NullPointerException if the specified collection is null
   */
  public boolean addAll(Collection<? extends E> c) {
      return addAll(size, c);
  }

  /**
   * Inserts all of the elements in the specified collection into this
   * list, starting at the specified position.  Shifts the element
   * currently at that position (if any) and any subsequent elements to
   * the right (increases their indices).  The new elements will appear
   * in the list in the order that they are returned by the
   * specified collection's iterator.
   *
   * @param index index at which to insert the first element
   *              from the specified collection
   * @param c collection containing elements to be added to this list
   * @return {@code true} if this list changed as a result of the call
   * @throws IndexOutOfBoundsException {@inheritDoc}
   * @throws NullPointerException if the specified collection is null
   */
  public boolean addAll(int index, Collection<? extends E> c) {
      checkPositionIndex(index);

      Object[] a = c.toArray();
      int numNew = a.length;
      if (numNew == 0)
          return false;

      Node<E> pred, succ;
      if (index == size) {
          succ = null;
          pred = last;
      } else {
          succ = node(index);
          pred = succ.prev;
      }

      for (Object o : a) {
          @SuppressWarnings("unchecked") E e = (E) o;
          Node<E> newNode = new Node<>(pred, e, null);
          if (pred == null)
              first = newNode;
          else
              pred.next = newNode;
          pred = newNode;
      }

      if (succ == null) {
          last = pred;
      } else {
          pred.next = succ;
          succ.prev = pred;
      }

      size += numNew;
      modCount++;
      return true;
  }

  /**
   * Removes all of the elements from this list.
   * The list will be empty after this call returns.
   */
  public void clear() {
      // Clearing all of the links between nodes is "unnecessary", but:
      // - helps a generational GC if the discarded nodes inhabit
      //   more than one generation
      // - is sure to free memory even if there is a reachable Iterator
      for (Node<E> x = first; x != null; ) {
          Node<E> next = x.next;
          x.item = null;
          x.next = null;
          x.prev = null;
          x = next;
      }
      first = last = null;
      size = 0;
      modCount++;
  }


  // Positional Access Operations

  /**
   * Returns the element at the specified position in this list.
   *
   * @param index index of the element to return
   * @return the element at the specified position in this list
   * @throws IndexOutOfBoundsException {@inheritDoc}
   */
  public E get(int index) {
      checkElementIndex(index);
      return node(index).item;
  }

  /**
   * Replaces the element at the specified position in this list with the
   * specified element.
   *
   * @param index index of the element to replace
   * @param element element to be stored at the specified position
   * @return the element previously at the specified position
   * @throws IndexOutOfBoundsException {@inheritDoc}
   */
  public E set(int index, E element) {
      checkElementIndex(index);
      Node<E> x = node(index);
      E oldVal = x.item;
      x.item = element;
      return oldVal;
  }

  /**
   * Inserts the specified element at the specified position in this list.
   * Shifts the element currently at that position (if any) and any
   * subsequent elements to the right (adds one to their indices).
   *
   * @param index index at which the specified element is to be inserted
   * @param element element to be inserted
   * @throws IndexOutOfBoundsException {@inheritDoc}
   */
  public void add(int index, E element) {
      checkPositionIndex(index);

      if (index == size)
          linkLast(element);
      else
          linkBefore(element, node(index));
  }

  /**
   * Removes the element at the specified position in this list.  Shifts any
   * subsequent elements to the left (subtracts one from their indices).
   * Returns the element that was removed from the list.
   *
   * @param index the index of the element to be removed
   * @return the element previously at the specified position
   * @throws IndexOutOfBoundsException {@inheritDoc}
   */
  public E remove(int index) {
      checkElementIndex(index);
      return unlink(node(index));
  }

  /**
   * Tells if the argument is the index of an existing element.
   */
  private boolean isElementIndex(int index) {
      return index >= 0 && index < size;
  }

  /**
   * Tells if the argument is the index of a valid position for an
   * iterator or an add operation.
   */
  private boolean isPositionIndex(int index) {
      return index >= 0 && index <= size;
  }

  /**
   * Constructs an IndexOutOfBoundsException detail message.
   * Of the many possible refactorings of the error handling code,
   * this "outlining" performs best with both server and client VMs.
   */
  private String outOfBoundsMsg(int index) {
      return "Index: "+index+", Size: "+size;
  }

  private void checkElementIndex(int index) {
      if (!isElementIndex(index))
          throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
  }

  private void checkPositionIndex(int index) {
      if (!isPositionIndex(index))
          throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
  }

  /**
   * Returns the (non-null) Node at the specified element index.
   */
  Node<E> node(int index) {
      // assert isElementIndex(index);

      if (index < (size >> 1)) {
          Node<E> x = first;
          for (int i = 0; i < index; i++)
              x = x.next;
          return x;
      } else {
          Node<E> x = last;
          for (int i = size - 1; i > index; i--)
              x = x.prev;
          return x;
      }
  }

  // Search Operations

  /**
   * Returns the index of the first occurrence of the specified element
   * in this list, or -1 if this list does not contain the element.
   * More formally, returns the lowest index {@code i} such that
   * {@code Objects.equals(o, get(i))},
   * or -1 if there is no such index.
   *
   * @param o element to search for
   * @return the index of the first occurrence of the specified element in
   *         this list, or -1 if this list does not contain the element
   */
  public int indexOf(Object o) {
      int index = 0;
      if (o == null) {
          for (Node<E> x = first; x != null; x = x.next) {
              if (x.item == null)
                  return index;
              index++;
          }
      } else {
          for (Node<E> x = first; x != null; x = x.next) {
              if (o.equals(x.item))
                  return index;
              index++;
          }
      }
      return -1;
  }

  /**
   * Returns the index of the last occurrence of the specified element
   * in this list, or -1 if this list does not contain the element.
   * More formally, returns the highest index {@code i} such that
   * {@code Objects.equals(o, get(i))},
   * or -1 if there is no such index.
   *
   * @param o element to search for
   * @return the index of the last occurrence of the specified element in
   *         this list, or -1 if this list does not contain the element
   */
  public int lastIndexOf(Object o) {
      int index = size;
      if (o == null) {
          for (Node<E> x = last; x != null; x = x.prev) {
              index--;
              if (x.item == null)
                  return index;
          }
      } else {
          for (Node<E> x = last; x != null; x = x.prev) {
              index--;
              if (o.equals(x.item))
                  return index;
          }
      }
      return -1;
  }

  // Queue operations.

  /**
   * Retrieves, but does not remove, the head (first element) of this list.
   *
   * @return the head of this list, or {@code null} if this list is empty
   * @since 1.5
   */
  public E peek() {
      final Node<E> f = first;
      return (f == null) ? null : f.item;
  }

  /**
   * Retrieves, but does not remove, the head (first element) of this list.
   *
   * @return the head of this list
   * @throws NoSuchElementException if this list is empty
   * @since 1.5
   */
  public E element() {
      return getFirst();
  }

  /**
   * Retrieves and removes the head (first element) of this list.
   *
   * @return the head of this list, or {@code null} if this list is empty
   * @since 1.5
   */
  public E poll() {
      final Node<E> f = first;
      return (f == null) ? null : unlinkFirst(f);
  }

  /**
   * Retrieves and removes the head (first element) of this list.
   *
   * @return the head of this list
   * @throws NoSuchElementException if this list is empty
   * @since 1.5
   */
  public E remove() {
      return removeFirst();
  }

  /**
   * Adds the specified element as the tail (last element) of this list.
   *
   * @param e the element to add
   * @return {@code true} (as specified by {@link Queue#offer})
   * @since 1.5
   */
  public boolean offer(E e) {
      return add(e);
  }

  // Deque operations
  /**
   * Inserts the specified element at the front of this list.
   *
   * @param e the element to insert
   * @return {@code true} (as specified by {@link Deque#offerFirst})
   * @since 1.6
   */
  public boolean offerFirst(E e) {
      addFirst(e);
      return true;
  }

  /**
   * Inserts the specified element at the end of this list.
   *
   * @param e the element to insert
   * @return {@code true} (as specified by {@link Deque#offerLast})
   * @since 1.6
   */
  public boolean offerLast(E e) {
      addLast(e);
      return true;
  }

  /**
   * Retrieves, but does not remove, the first element of this list,
   * or returns {@code null} if this list is empty.
   *
   * @return the first element of this list, or {@code null}
   *         if this list is empty
   * @since 1.6
   */
  public E peekFirst() {
      final Node<E> f = first;
      return (f == null) ? null : f.item;
   }

  /**
   * Retrieves, but does not remove, the last element of this list,
   * or returns {@code null} if this list is empty.
   *
   * @return the last element of this list, or {@code null}
   *         if this list is empty
   * @since 1.6
   */
  public E peekLast() {
      final Node<E> l = last;
      return (l == null) ? null : l.item;
  }

  /**
   * Retrieves and removes the first element of this list,
   * or returns {@code null} if this list is empty.
   *
   * @return the first element of this list, or {@code null} if
   *     this list is empty
   * @since 1.6
   */
  public E pollFirst() {
      final Node<E> f = first;
      return (f == null) ? null : unlinkFirst(f);
  }

  /**
   * Retrieves and removes the last element of this list,
   * or returns {@code null} if this list is empty.
   *
   * @return the last element of this list, or {@code null} if
   *     this list is empty
   * @since 1.6
   */
  public E pollLast() {
      final Node<E> l = last;
      return (l == null) ? null : unlinkLast(l);
  }

  /**
   * Pushes an element onto the stack represented by this list.  In other
   * words, inserts the element at the front of this list.
   *
   * <p>This method is equivalent to {@link #addFirst}.
   *
   * @param e the element to push
   * @since 1.6
   */
  public void push(E e) {
      addFirst(e);
  }

  /**
   * Pops an element from the stack represented by this list.  In other
   * words, removes and returns the first element of this list.
   *
   * <p>This method is equivalent to {@link #removeFirst()}.
   *
   * @return the element at the front of this list (which is the top
   *         of the stack represented by this list)
   * @throws NoSuchElementException if this list is empty
   * @since 1.6
   */
  public E pop() {
      return removeFirst();
  }

  /**
   * Removes the first occurrence of the specified element in this
   * list (when traversing the list from head to tail).  If the list
   * does not contain the element, it is unchanged.
   *
   * @param o element to be removed from this list, if present
   * @return {@code true} if the list contained the specified element
   * @since 1.6
   */
  public boolean removeFirstOccurrence(Object o) {
      return remove(o);
  }

  /**
   * Removes the last occurrence of the specified element in this
   * list (when traversing the list from head to tail).  If the list
   * does not contain the element, it is unchanged.
   *
   * @param o element to be removed from this list, if present
   * @return {@code true} if the list contained the specified element
   * @since 1.6
   */
  public boolean removeLastOccurrence(Object o) {
      if (o == null) {
          for (Node<E> x = last; x != null; x = x.prev) {
              if (x.item == null) {
                  unlink(x);
                  return true;
              }
          }
      } else {
          for (Node<E> x = last; x != null; x = x.prev) {
              if (o.equals(x.item)) {
                  unlink(x);
                  return true;
              }
          }
      }
      return false;
  }

  /**
   * Returns a list-iterator of the elements in this list (in proper
   * sequence), starting at the specified position in the list.
   * Obeys the general contract of {@code List.listIterator(int)}.<p>
   *
   * The list-iterator is <i>fail-fast</i>: if the list is structurally
   * modified at any time after the Iterator is created, in any way except
   * through the list-iterator's own {@code remove} or {@code add}
   * methods, the list-iterator will throw a
   * {@code ConcurrentModificationException}.  Thus, in the face of
   * concurrent modification, the iterator fails quickly and cleanly, rather
   * than risking arbitrary, non-deterministic behavior at an undetermined
   * time in the future.
   *
   * @param index index of the first element to be returned from the
   *              list-iterator (by a call to {@code next})
   * @return a ListIterator of the elements in this list (in proper
   *         sequence), starting at the specified position in the list
   * @throws IndexOutOfBoundsException {@inheritDoc}
   * @see List#listIterator(int)
   */
  public ListIterator<E> listIterator(int index) {
      checkPositionIndex(index);
      return new ListItr(index);
  }

  private class ListItr implements ListIterator<E> {
      private Node<E> lastReturned;
      private Node<E> next;
      private int nextIndex;
      private int expectedModCount = modCount;

      ListItr(int index) {
          // assert isPositionIndex(index);
          next = (index == size) ? null : node(index);
          nextIndex = index;
      }

      public boolean hasNext() {
          return nextIndex < size;
      }

      public E next() {
          checkForComodification();
          if (!hasNext())
              throw new NoSuchElementException();

          lastReturned = next;
          next = next.next;
          nextIndex++;
          return lastReturned.item;
      }

      public boolean hasPrevious() {
          return nextIndex > 0;
      }

      public E previous() {
          checkForComodification();
          if (!hasPrevious())
              throw new NoSuchElementException();

          lastReturned = next = (next == null) ? last : next.prev;
          nextIndex--;
          return lastReturned.item;
      }

      public int nextIndex() {
          return nextIndex;
      }

      public int previousIndex() {
          return nextIndex - 1;
      }

      public void remove() {
          checkForComodification();
          if (lastReturned == null)
              throw new IllegalStateException();

          Node<E> lastNext = lastReturned.next;
          unlink(lastReturned);
          if (next == lastReturned)
              next = lastNext;
          else
              nextIndex--;
          lastReturned = null;
          expectedModCount++;
      }

      public void set(E e) {
          if (lastReturned == null)
              throw new IllegalStateException();
          checkForComodification();
          lastReturned.item = e;
      }

      public void add(E e) {
          checkForComodification();
          lastReturned = null;
          if (next == null)
              linkLast(e);
          else
              linkBefore(e, next);
          nextIndex++;
          expectedModCount++;
      }

      public void forEachRemaining(Consumer<? super E> action) {
          Objects.requireNonNull(action);
          while (modCount == expectedModCount && nextIndex < size) {
              action.accept(next.item);
              lastReturned = next;
              next = next.next;
              nextIndex++;
          }
          checkForComodification();
      }

      final void checkForComodification() {
          if (modCount != expectedModCount)
              throw new ConcurrentModificationException();
      }
  }

  private static class Node<E> {
      E item;
      Node<E> next;
      Node<E> prev;

      Node(Node<E> prev, E element, Node<E> next) {
          this.item = element;
          this.next = next;
          this.prev = prev;
      }
  }

  /**
   * @since 1.6
   */
  public Iterator<E> descendingIterator() {
      return new DescendingIterator();
  }

  /**
   * Adapter to provide descending iterators via ListItr.previous
   */
  private class DescendingIterator implements Iterator<E> {
      private final ListItr itr = new ListItr(size());
      public boolean hasNext() {
          return itr.hasPrevious();
      }
      public E next() {
          return itr.previous();
      }
      public void remove() {
          itr.remove();
      }
  }

  @SuppressWarnings("unchecked")
  private LinkedList<E> superClone() {
      try {
          return (LinkedList<E>) super.clone();
      } catch (CloneNotSupportedException e) {
          throw new InternalError(e);
      }
  }

  /**
   * Returns a shallow copy of this {@code LinkedList}. (The elements
   * themselves are not cloned.)
   *
   * @return a shallow copy of this {@code LinkedList} instance
   */
  public Object clone() {
      LinkedList<E> clone = superClone();

      // Put clone into "virgin" state
      clone.first = clone.last = null;
      clone.size = 0;
      clone.modCount = 0;

      // Initialize clone with our elements
      for (Node<E> x = first; x != null; x = x.next)
          clone.add(x.item);

      return clone;
  }

  /**
   * Returns an array containing all of the elements in this list
   * in proper sequence (from first to last element).
   *
   * <p>The returned array will be "safe" in that no references to it are
   * maintained by this list.  (In other words, this method must allocate
   * a new array).  The caller is thus free to modify the returned array.
   *
   * <p>This method acts as bridge between array-based and collection-based
   * APIs.
   *
   * @return an array containing all of the elements in this list
   *         in proper sequence
   */
  public Object[] toArray() {
      Object[] result = new Object[size];
      int i = 0;
      for (Node<E> x = first; x != null; x = x.next)
          result[i++] = x.item;
      return result;
  }

  /**
   * Returns an array containing all of the elements in this list in
   * proper sequence (from first to last element); the runtime type of
   * the returned array is that of the specified array.  If the list fits
   * in the specified array, it is returned therein.  Otherwise, a new
   * array is allocated with the runtime type of the specified array and
   * the size of this list.
   *
   * <p>If the list fits in the specified array with room to spare (i.e.,
   * the array has more elements than the list), the element in the array
   * immediately following the end of the list is set to {@code null}.
   * (This is useful in determining the length of the list <i>only</i> if
   * the caller knows that the list does not contain any null elements.)
   *
   * <p>Like the {@link #toArray()} method, this method acts as bridge between
   * array-based and collection-based APIs.  Further, this method allows
   * precise control over the runtime type of the output array, and may,
   * under certain circumstances, be used to save allocation costs.
   *
   * <p>Suppose {@code x} is a list known to contain only strings.
   * The following code can be used to dump the list into a newly
   * allocated array of {@code String}:
   *
   * <pre>
   *     String[] y = x.toArray(new String[0]);</pre>
   *
   * Note that {@code toArray(new Object[0])} is identical in function to
   * {@code toArray()}.
   *
   * @param a the array into which the elements of the list are to
   *          be stored, if it is big enough; otherwise, a new array of the
   *          same runtime type is allocated for this purpose.
   * @return an array containing the elements of the list
   * @throws ArrayStoreException if the runtime type of the specified array
   *         is not a supertype of the runtime type of every element in
   *         this list
   * @throws NullPointerException if the specified array is null
   */
  @SuppressWarnings("unchecked")
  public <T> T[] toArray(T[] a) {
      if (a.length < size)
          a = (T[])java.lang.reflect.Array.newInstance(
                              a.getClass().getComponentType(), size);
      int i = 0;
      Object[] result = a;
      for (Node<E> x = first; x != null; x = x.next)
          result[i++] = x.item;

      if (a.length > size)
          a[size] = null;

      return a;
  }

  private static final long serialVersionUID = 876323262645176354L;

  /**
   * Saves the state of this {@code LinkedList} instance to a stream
   * (that is, serializes it).
   *
   * @serialData The size of the list (the number of elements it
   *             contains) is emitted (int), followed by all of its
   *             elements (each an Object) in the proper order.
   */
  private void writeObject(java.io.ObjectOutputStream s)
      throws java.io.IOException {
      // Write out any hidden serialization magic
      s.defaultWriteObject();

      // Write out size
      s.writeInt(size);

      // Write out all elements in the proper order.
      for (Node<E> x = first; x != null; x = x.next)
          s.writeObject(x.item);
  }

  /**
   * Reconstitutes this {@code LinkedList} instance from a stream
   * (that is, deserializes it).
   */
  @SuppressWarnings("unchecked")
  private void readObject(java.io.ObjectInputStream s)
      throws java.io.IOException, ClassNotFoundException {
      // Read in any hidden serialization magic
      s.defaultReadObject();

      // Read in size
      int size = s.readInt();

      // Read in all elements in the proper order.
      for (int i = 0; i < size; i++)
          linkLast((E)s.readObject());
  }

  /**
   * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
   * and <em>fail-fast</em> {@link Spliterator} over the elements in this
   * list.
   *
   * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
   * {@link Spliterator#ORDERED}.  Overriding implementations should document
   * the reporting of additional characteristic values.
   *
   * @implNote
   * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
   * and implements {@code trySplit} to permit limited parallelism..
   *
   * @return a {@code Spliterator} over the elements in this list
   * @since 1.8
   */
  @Override
  public Spliterator<E> spliterator() {
      return new LLSpliterator<>(this, -1, 0);
  }

  /** A customized variant of Spliterators.IteratorSpliterator */
  static final class LLSpliterator<E> implements Spliterator<E> {
      static final int BATCH_UNIT = 1 << 10;  // batch array size increment
      static final int MAX_BATCH = 1 << 25;  // max batch array size;
      final LinkedList<E> list; // null OK unless traversed
      Node<E> current;      // current node; null until initialized
      int est;              // size estimate; -1 until first needed
      int expectedModCount; // initialized when est set
      int batch;            // batch size for splits

      LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
          this.list = list;
          this.est = est;
          this.expectedModCount = expectedModCount;
      }

      final int getEst() {
          int s; // force initialization
          final LinkedList<E> lst;
          if ((s = est) < 0) {
              if ((lst = list) == null)
                  s = est = 0;
              else {
                  expectedModCount = lst.modCount;
                  current = lst.first;
                  s = est = lst.size;
              }
          }
          return s;
      }

      public long estimateSize() { return (long) getEst(); }

      public Spliterator<E> trySplit() {
          Node<E> p;
          int s = getEst();
          if (s > 1 && (p = current) != null) {
              int n = batch + BATCH_UNIT;
              if (n > s)
                  n = s;
              if (n > MAX_BATCH)
                  n = MAX_BATCH;
              Object[] a = new Object[n];
              int j = 0;
              do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
              current = p;
              batch = j;
              est = s - j;
              return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
          }
          return null;
      }

      public void forEachRemaining(Consumer<? super E> action) {
          Node<E> p; int n;
          if (action == null) throw new NullPointerException();
          if ((n = getEst()) > 0 && (p = current) != null) {
              current = null;
              est = 0;
              do {
                  E e = p.item;
                  p = p.next;
                  action.accept(e);
              } while (p != null && --n > 0);
          }
          if (list.modCount != expectedModCount)
              throw new ConcurrentModificationException();
      }

      public boolean tryAdvance(Consumer<? super E> action) {
          Node<E> p;
          if (action == null) throw new NullPointerException();
          if (getEst() > 0 && (p = current) != null) {
              --est;
              E e = p.item;
              current = p.next;
              action.accept(e);
              if (list.modCount != expectedModCount)
                  throw new ConcurrentModificationException();
              return true;
          }
          return false;
      }

      public int characteristics() {
          return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
      }
  }

}